
1

سرفصل آموزشی

پک پایه متخصص اینترنت اشیا

Embedded Linux Level-1

Embedded Linux Level-2

C Programming and App Development

2

6

10

..

...

..

فهرست سرفصل‌های دوره‌های آموزشی

2

سرفصل‌های دوره آموزشی

Embedded Linux
Level-1

Introduction to embedded Linux
•	 Advantages of Linux versus traditional embedded operating systems
•	 Typical hardware platforms used to run embedded Linux systems
•	 Overall architecture of embedded Linux systems
•	 Overview of the major software components
•	 Development environment for Embedded Linux development

Cross-compiling toolchain and C library

•	 What is inside a cross-compiling toolchain?
•	 Choosing the target C library
•	 What is inside the C LIBRARY?
•	 Ready to use cross-compiling toolchains
•	 Building a cross-compiling toolchain with automated tools
•	 Getting and configuring Crosstool-NG
•	 Executing it to build a custom cross compilation toolchain
•	 Exploring the contents of the toolchain

3

Boot process, firmware, and bootloaders

•	 Booting process of embedded platforms, focus on the x86 and ARM
architectures

•	 Boot process and bootloaders on x86 platforms (legacy and UEFI)
•	 Boot process on ARM platforms: ROM code, bootloaders, ARM Trusted

Firmware
•	 Focus on U-Boot: configuration, installation, and usage.
•	 U-Boot commands, U-Boot environment, U-Boot scripts, U-Boot gener-

ic distro boot mechanism

Bootloader and U-boot

•	 Set up serial communication with the board.
•	 Configure, compile and install U-Boot for the target hardware
•	 Configure, compile and install Trusted Firmware-A
•	 Become familiar with U-Boot environment and commands
•	 Set up TFTP communication with the board. Use TFTP U-Boot com-

mands

Linux kernel

•	 Role and general architecture of the Linux kernel
•	 Separation between kernel and user-space, and interfaces between

user-space and the Linux kernel
•	 Understanding Linux kernel versions choosing between vendor-provid-

ed kernel and upstream kernel, Long Term Support versions
•	 Getting the Linux kernel source code
•	 Fetching Linux kernel sources
•	 Clone the mainline Linux tree
•	 Accessing stable releases

4

Configuring, compiling and booting the Linux kernel

•	 Configuring the Linux kernel: ready-made configuration files, configura-
tion interfaces

•	 Concept of Device Tree
•	 Cross-compiling the Linux kernel
•	 Study of the generated files and their role
•	 Installing and booting the Linux kernel
•	 The Linux kernel command line
•	 Configuring the Linux kernel and cross-compiling it for the embedded

hardware
•	 Downloading your kernel on the board through U-boot’s TFTP client.
•	 Booting your kernel.
•	 Automating the kernel boot process with UBoot

Root filesystem in Linux

• Filesystems in Linux
• Role and organization of the root filesystem
• Location of the root filesystem: on storage, in memory, from the net-
work
• Device files, virtual filesystems
• Contents of a typical root filesystem
• Detailed overview. Detailed features
• Configuration, compiling and deploying

Tiny root file system built from scratch with BusyBox

• Setting up a kernel to boot your system on a workstation directory
exported by NFS
• Passing kernel command line parameters to boot on NFS
• Creating the full root filesystem from scratch. Populating it with Busy-

5

Box based utilities.
• System startup using BusyBox init
• Using the BusyBox HTTP server.
• Controlling the target from a web browser on the PC host.

Block filesystems

• Accessing and partitioning block devices
• Filesystems for block devices
• Usefulness of journaled filesystems
• Read-only block filesystems
• RAM filesystems
• How to create each of these filesystems
• Suggestions for embedded systems
• Creating partitions on your SD card
• Booting a system with a mix of filesystems: SquashFS for the root
filesystem, ext4 for system data, and tmpfs for temporary system files

Flash filesystems

•	 The Memory Technology Devices (MTD) filesystem
•	 Filesystems for MTD storage: JFFS2, Yaffs2, UBIFS
•	 Kernel configuration options
•	 MTD storage partitions
•	 Focus on today’s best solution, UBI and UBIFS: preparing, flashing and

using UBI images

6

سرفصل‌های دوره آموزشی

Embedded Linux
Level-2

Root filesystem in Linux

• Filesystems in Linux
• Role and organization of the root filesystem
• Location of the root filesystem: on storage, in memory & from the net-
work
• Device files, virtual filesystems
• Contents of a typical root filesystem
• Overview & features
• Configuration, compiling and deploying

Tiny root filesystem built from scratch with BusyBox

• Setting up a kernel to boot your system on a workstation directory ex-
ported by NFS
• Passing kernel command line parameters to boot on NFS
• Creating the full root filesystem from scratch. Populating it with Busy-
Box based utilities.
• System startup using BusyBox init
• Using the BusyBox HTTP server
• Controlling the target from a web browser on the PC host
• Setting up shared libraries on the target and compiling a sample exe-
cutable

7

Accessing hardware devices

• How to access hardware on popular busses: USB, SPI, I2C, PCI
• Usage of kernel drivers and direct userspace access
• The Device Tree syntax, and how to use it to describe additional devic-
es
• Finding Linux kernel drivers for specific hardware devices
• Using kernel modules
• Hardware access using /dev and /sys
• User-space interfaces for the most common hardware devices: storage,
network, GPIO, LEDs, audio, graphics, video
• Exploring the contents of /dev and /sys and the devices available on
the embedded hardware platform
• Using GPIOs and LEDs
• Modifying the Device Tree to control pin multiplexing and to declare an
I2Cconnected joystick
• Adding support for a USB audio card using
• Linux kernel modules
• Adding support for the I2C-connected joystick through an out-of-tree
module

Cross-compiling user-space libraries and applications

• Configuring, cross-compiling and installing applications and libraries
• Concept of build system, and overview of a few common build systems
used by open-source projects: Makefile, autotools, CMake, meson
• Overview of the common issues encountered when cross-compiling
Manual cross-compilation of several opensource libraries and applica-
tions for an embedded platform
• Learning about common pitfalls and issues, and their solutions
• This includes compiling alsa-utils package, and using its speaker-test
program to test that audio works on the target

8

Embedded system building tools

• Approaches for building embedded Linux systems: build systems and
binary distributions
• Principle of build systems, overview of Yocto Project/OpenEmbedded
and Buildroot.
• Principle of binary distributions and useful tools, focus on Debian/
Ubuntu
• Specialized software frameworks/ distributions: Tizen, AGL, Android
• Using Buildroot to rebuild the same basic system plus a sound playing
server (MPD) and a client to control it (mpc)
• Driving music playback, directly from the target, and then remotely
through an MPD client on the host machine
• Analyzing dependencies between packages

Open source licenses and compliance

• Presentation of the most important open-source licenses: GPL, LGPL,
MIT, BSD, Apache and etc.
• Concept of copyleft licenses
• Differences between (L) GPL version 2 and 3
• Compliance with open-source licenses: best practices

Overview of major embedded Linux software stacks

• Systemd as an init system
• Hardware management with udev
• Inter-process communication with D-Bus
• The connectivity software stack: Ethernet, WiFi, modems, Bluetooth
• The graphics software stack: DRM/KMS, X.org, Wayland, Qt, Gtk, OpenGL
• The multimedia software stack: Video4Linux, GStreamer, Pulseaudio,
Pipewire

9

Integration of additional software stacks

• Integration of systemd as an init system
• Use udev built in systemd for automatic module loading

Application development and debugging

• Programming languages and libraries available.
• Build system for your application, an overview of CMake and meson
• The gdb debugger: remote debugging with gdbserver, post-mortem de-
bugging with core files
• Performance analysis, tracing and profiling tools, memory checkers:
strace, ltrace, perf, valgrind
• Creating an application that uses an I2Cconnected joystick to control
an audio player
• Setting up an IDE to develop and remotely debug an application
• Using strace, ltrace, gdbserver and perf to debug/investigate buggy
applications on the embedded board

Useful resources

• Books about embedded Linux and system programming
• Useful online resources
• International conferences

10

سرفصل‌های دوره آموزشی

C programming
& App Development
Part one - Essential C programming

Introduction

C Fundamentals

Formatted I/O

Expression & Statement

Loops

Basic Types

Arrays

Functions

• Programming Process
• Setting Up
• Specification
• Code Design

11

• Prototype
• Makefile
• Testing
• Debugging
• Maintenance
• Revisions
• Electronic Archaeology
• Marking Up the Program
• Using the Debugger
• Text Editor as a Browser
• Add Comments

Pointers

Strings

The Preprocessor

Part Two – Advance C Programming

Writing Large Program

Advance uses of pointers

Declarations

Structure

Union

Enumeration

12

Program Design

Low-Level Programming

The Standard C library

• Input/output
• Numbers and Characters
• Error Handling
• C99

Part Three – Linux Programming

Memory Management and Allocation

File I/O

Time

Processes

Pipes and Fifo’s

Signals

POSIX Threads

Writing Secure Privileged Program

Inter Process Communication

13

Mutex

Networking and Sockets

Sockets – Fundamentals of TCP/IP networks

Part Four – Secure C Programming

Introduction

Secure working with strings

Secure pointers

Dynamic memory management

Integer Security

Formatted Output

Concurrency

File I/O

Recommended Practice

• The security development life-cycle
• Design
• Implementation
• Verification

