Gjgol Juad
Embedded Linux yw3igo gl 49;> G

(0jgol (5l@0;93 (sl JadSw cuwygs
) Real-Time With PREEMPT-RT ..ooiiiiiiiiiiiie e 2

) Embedded Linux Boot-Time Optimizationcccccooiviiiiiiiiiiiiiiecie 5

&) Embedded DeVice DIiVETcoooiiiiiiiiiii it 9

Real-Time
with PREEMPT-RT

Introduction to Real-Time behavior and determinism

e Definition of a Real-Time Operating System
Specificities of multi-task systems

Common locking and prioritizing patterns
Overview of existing Real-Time Operating Systems
Approaches to bring Real-Time capabilities to Linux

The PREEMPT_RT patch Demo & Building a mainline Linux Ker-
nel with

e The PREEMPT_RT patch

e History and future of the PREEMPT_RT patch

e Real-Time improvements from PRE-EMPT_RT in mainline Linux
e The internals of PREEMPT_RT

e Interrupt handling: threaded interrupts, softirgs

e Locking primitives: mutexes and spinlocks, sleeping spinlocks

e Preemption models

e Downloading the Linux Kernel, and apply-ing the patch

e Configuring the Kernel

e Booting the Kernel on the target hardware

Hardware configuration and limitations for Real-Time

e Interrupts and deep firmware’s

¢ |nteraction with power management features: CPU frequency scaling
and sleep states

e DMA

Tools: Benchmarking, Stressing and Analyzing

e Benchmarking with cyclictest

e System stressing with stress-ng and hack-bench

e The Linux Kernel tracing infrastructure

e Latency and scheduling analysis with ftrace, kernelshark or LTTng
e Usage of benchmarking and stress tools

e Common benchmarking techniques

e Benchmarking and configuring the hard-ware platform

Kernel infrastructures and configuration

e Good practices when writing Linux kernel drivers

e Scheduling policies and priorities: SCHED FIFO, SCHED_RR, SCHED _
DEADLINE

e CPU and IRQ Affinity

e Memory management

e CPU isolation with isolcpus

Real-Time Applications programming patterns

e Debugging a demo application

e POSIX real-time API

e Thread management and configuration

e Memory management: memory allocation and memory locking, stack
e Locking patterns: mutexes, priority inheritance

¢ Inter-Process Communication

e Signaling

e Make a demo userspace application deterministic

e Use the tracing infrastructure to identify the cause of a latency

e Learn how to use the POSIX APl to manage threads, locking and mem-
ory

e Learn how to use the CPU affinities and configure the scheduling policy

Hard real-time solutions Demo - Xenomai latency tests

e Xenomai, a hard real-time solution for Linux: features, concepts, imple-
mentation and examples.

e Setting up Xenomai.

e Latency tests with Xenomai.

e Comparing the results with PREEMPT_RT

Embedded Linux
Boot-Time Optimization

Principles

e How to measure boot time

e Main ideas

e Downloading bootloader, kernel and Build-root source code
e Board setup, setting up serial communication

e Configure Buildroot and build the system

e Configure and build the U-Boot bootloader.

e Prepare an SD card and boot the bootloader from it

e Configure and build the kernel. Boot the system

Measuring time

Generic software techniques

Hardware techniques

Specific solutions for each stage

Modify the system to measure time at various steps
Timing messages on the serial console

Timing the launching of the application

B

FLAM LINUX HOUSE

Toolchain optimizations

Introduction to toolchains

C libraries

Size information

Measuring executable performance with time

Using strace and ltrace

Other profiling techniques

Finding unnecessary configuration options in applications
Modifying configuration options through Buildroot
Experiments with strace to trace program execution

Application optimization

Using strace and ltrace

Other profiling techniques

Finding unnecessary configuration options in applications
Modifying configuration options through Buildroot
Experiments with strace to trace program execution

Optimizing system initialization

Using BusyBox bootchartd

Optimizing init scripts

Possibility to start your application directly

Using Buildroot to remove unnecessary scripts and commands
Access-time based technique to identify unused files
Simplifying BusyBox

Starting the application as the init program

Filesystem optimizations

e Available filesystems, performance and boot time aspects

e Making UBIFS faster

e Tweaks for reducing boot time

e Booting on an initramfs

e Using static executables: licensing constraints

e Trying and measuring two block filesystems: ext4 and SquashFS

e Trying and measuring the initramfs solution. Constraints due to this
solution

Kernel optimizations

e Using Initcall debug to generate a boot graph

e Compression and size features

e Reducing or suppressing console output

e Multiple tweaks to reduce boot time

e Generating and analyzing a boot graph for the kernel
e Find and eliminate unnecessary kernel features

e Find the best kernel compression solution for our system

Bootloader optimizations

e Generic tips for reducing U-Boot’s size and boot time

e Optimizing U-Boot scripts and kernel loading

e Skipping the bootloader - How to modify U-Boot to enable its Falcon
mode

e The Device Tree preparation work that U-Boot does to prepare Linux
booting

e Using the spl export command to do this work in advance

e Modifying U-Boot’s source code and configuring it for directly booting
Linux and

Skipping the U-Boot second stage.

e Example instructions and setups for booting from MMC and NAND
flash

e How to debug Falcon mode

e How to fall back to U-Boot

¢ Limitations

Bootloader optimizations

e Using the above techniques to make the bootloader as quick as possi-
ble

e Switching to faster storage

¢ Configuring U-Boot for Falcon mode booting, skipping U-Boot’s second
stage

Embedded

Device Drivers

Introduction to the Linux kernel:

e Kernel features

e Understanding the development process
e Legal constraints with device drivers

e Kernel user interface (/proc and /sys)

e Userspace device drivers

Kernel sources:

Specifics of Linux kernel development

Coding standards

Retrieving Linux kernel sources

Tour of the Linux kernel sources

Kernel source code browsers: cscope, Linux Cross Reference (LXR)

B

FLAMN LINUX HOUSE

Kernel source code:

e Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds of
information.

¢ Using the Unix command line and then kernel source code browsers

Configuring, compiling and booting the Linux kernel:

Kernel configuration

Native compiling. Generated files.
Booting the kernel

Kernel booting parameters

NFS booting and cross-compiling:

e Booting on a directory on your GNU/Linux workstation, through NFS
e Kernel cross-compiling

Kernel configuration, cross-compiling and booting on NFS
e Using the ARM board

e Configuring, cross-compiling and booting a Linux kernel with NFS boot
support

10

11

Linux kernel modules:

e Linux device drivers

e Asimple module

e Programming constraints

e Loading, unloading modules

e Module parameters

e Module dependencies

e Adding sources to the kernel tree

e Generating patches to share them with others

Writing modules:

e Write a kernel module with several capabilities, including module pa-
rameters.

e Access kernel internals from your module

e Setup the environment to compile it

Memory management:

e Linux: memory management - Physical and virtual (kernel and user)
address spaces

e Linux memory management implementation

Allocating with kmalloc()

Allocating by pages

Allocating with vmalloc()

I/0 memory and ports:

¢ |/O register and memory range registration

¢ |/O register and memory access

e Read / write memory barriers

e Make a remote connection to your board through ssh

e Access the system console through the network

e Reserve the I/O memory addresses used by the serial port

e Read device registers and write data to them, to send characters on
the serial port

Character drivers:

e Device numbers

e Getting free device numbers

¢ Implementing file operations: read, write, open, close, ioctl...

e Exchanging data between kernel-space and user-space

e Character driver registration

e Using the ARM board

e Writing a simple character driver, to write data to the serial port
e On your workstation, checking that transmitted data is received cor-
rectly

e Exchanging data between userspace and kernel space

e Practicing with the character device driver API

e Using kernel standard error codes

12

Processes, scheduling, sleeping and interrupts:

e Process management in the Linux kernel

e The Linux kernel scheduler and how processes sleep

e Interrupt handling in device drivers: interrupt handler registration and
programming

e Scheduling deferred work

Adding read capability to the character driver developed earlier
Register an interrupt handler

Waiting for data to be available in the read file operation

Waking up the code when data is available from the device

Driver debugging techniques:

e Debugging with printk

e proc and debugfs entries

e Analyzing a kernel oops

e Using kgdb, a kernel debugger

e Using the Magic SysRg commands
e Debugging through a JTAG probe
e SystemTap and demonstration

Investigating kernel faults:
e Using the ARM board

e Studying a broken driver
e Analyzing a kernel fault and locating the problem in the source code

13

14

Kernel boot-up details:
e Detailed description of the kernel boot-up process, from execution by

the bootloader to the execution of the first userspace program
e |nitcalls: how to register your own initialization routines

Working with the community:

How to get help from the community
Report bugs

Generate and send patches

Useful resources about the kernel

Managing kernel sources with git:

¢ Very useful to manage your changes to the Linux kernel (drivers, board
support code), staying in sync with mainstream updates

e Cloning an existing git tree

Creating your own branch with your own changes

Generating patches against the reference tree

Review of useful git commands

Understanding the work flow used by kernel developers, through the
study of typical scenarios

e Create your own git branch from the mainline tree

e Get changes from trees and generate your own patch-set

e Keep your branch updated with the changes in your reference tree

