
1

 سرفصل آموزشی
 Embedded Linux پک حرفه ای مهندسی

Real-Time with PREEMPT-RT

Embedded Linux Boot-Time Optimization

Embedded Device Driver

2

5

9

..

...

فهرست سرفصل‌های دوره‌های آموزشی

..

2

سرفصل‌های دوره آموزشی

Real-Time
with PREEMPT-RT

Introduction to Real-Time behavior and determinism

• Definition of a Real-Time Operating System
• Specificities of multi-task systems
• Common locking and prioritizing patterns
• Overview of existing Real-Time Operating Systems
• Approaches to bring Real-Time capabilities to Linux

The PREEMPT_RT patch Demo & Building a mainline Linux Ker-
nel with

• The PREEMPT_RT patch
• History and future of the PREEMPT_RT patch
• Real-Time improvements from PRE-EMPT_RT in mainline Linux
• The internals of PREEMPT_RT
• Interrupt handling: threaded interrupts, softirqs
• Locking primitives: mutexes and spinlocks, sleeping spinlocks
• Preemption models
• Downloading the Linux Kernel, and apply-ing the patch
• Configuring the Kernel
• Booting the Kernel on the target hardware

3

Hardware configuration and limitations for Real-Time

• Interrupts and deep firmware’s
• Interaction with power management features: CPU frequency scaling
and sleep states
• DMA

Tools: Benchmarking, Stressing and Analyzing

• Benchmarking with cyclictest
• System stressing with stress-ng and hack-bench
• The Linux Kernel tracing infrastructure
• Latency and scheduling analysis with ftrace, kernelshark or LTTng
• Usage of benchmarking and stress tools
• Common benchmarking techniques
• Benchmarking and configuring the hard-ware platform

Kernel infrastructures and configuration

• Good practices when writing Linux kernel drivers
• Scheduling policies and priorities: SCHED_FIFO, SCHED_RR, SCHED_
DEADLINE
• CPU and IRQ Affinity
• Memory management
• CPU isolation with isolcpus

4

Real-Time Applications programming patterns

• Debugging a demo application
• POSIX real-time API
• Thread management and configuration
• Memory management: memory allocation and memory locking, stack
• Locking patterns: mutexes, priority inheritance
• Inter-Process Communication
• Signaling
• Make a demo userspace application deterministic
• Use the tracing infrastructure to identify the cause of a latency
• Learn how to use the POSIX API to manage threads, locking and mem-
ory
• Learn how to use the CPU affinities and configure the scheduling policy

Hard real-time solutions Demo - Xenomai latency tests

• Xenomai, a hard real-time solution for Linux: features, concepts, imple-
mentation and examples.
• Setting up Xenomai.
• Latency tests with Xenomai.
• Comparing the results with PREEMPT_RT

5

سرفصل‌های دوره آموزشی

Embedded Linux
Boot-Time Optimization

Principles

• How to measure boot time
• Main ideas
• Downloading bootloader, kernel and Build-root source code
• Board setup, setting up serial communication
• Configure Buildroot and build the system
• Configure and build the U-Boot bootloader.
• Prepare an SD card and boot the bootloader from it
• Configure and build the kernel. Boot the system

Measuring time

• Generic software techniques
• Hardware techniques
• Specific solutions for each stage
• Modify the system to measure time at various steps
• Timing messages on the serial console
• Timing the launching of the application

6

Toolchain optimizations

• Introduction to toolchains
• C libraries
• Size information
• Measuring executable performance with time
• Using strace and ltrace
• Other profiling techniques
• Finding unnecessary configuration options in applications
• Modifying configuration options through Buildroot
• Experiments with strace to trace program execution

Application optimization

• Using strace and ltrace
• Other profiling techniques
• Finding unnecessary configuration options in applications
• Modifying configuration options through Buildroot
• Experiments with strace to trace program execution

Optimizing system initialization

• Using BusyBox bootchartd
• Optimizing init scripts
• Possibility to start your application directly
• Using Buildroot to remove unnecessary scripts and commands
• Access-time based technique to identify unused files
• Simplifying BusyBox
• Starting the application as the init program

7

Filesystem optimizations

• Available filesystems, performance and boot time aspects
• Making UBIFS faster
• Tweaks for reducing boot time
• Booting on an initramfs
• Using static executables: licensing constraints
• Trying and measuring two block filesystems: ext4 and SquashFS
• Trying and measuring the initramfs solution. Constraints due to this
solution

Kernel optimizations

• Using Initcall debug to generate a boot graph
• Compression and size features
• Reducing or suppressing console output
• Multiple tweaks to reduce boot time
• Generating and analyzing a boot graph for the kernel
• Find and eliminate unnecessary kernel features
• Find the best kernel compression solution for our system

Bootloader optimizations

• Generic tips for reducing U-Boot’s size and boot time
• Optimizing U-Boot scripts and kernel loading
• Skipping the bootloader - How to modify U-Boot to enable its Falcon
mode
• The Device Tree preparation work that U-Boot does to prepare Linux
booting
• Using the spl export command to do this work in advance
• Modifying U-Boot’s source code and configuring it for directly booting
Linux and

8

Skipping the U-Boot second stage.

• Example instructions and setups for booting from MMC and NAND
flash
• How to debug Falcon mode
• How to fall back to U-Boot
• Limitations

Bootloader optimizations

• Using the above techniques to make the bootloader as quick as possi-
ble
• Switching to faster storage
• Configuring U-Boot for Falcon mode booting, skipping U-Boot’s second
stage

9

سرفصل‌های دوره آموزشی

Embedded
Device Drivers
Introduction to the Linux kernel:

• Kernel features
• Understanding the development process
• Legal constraints with device drivers
• Kernel user interface (/proc and /sys)
• Userspace device drivers

Kernel sources:

• Specifics of Linux kernel development
• Coding standards
• Retrieving Linux kernel sources
• Tour of the Linux kernel sources
• Kernel source code browsers: cscope, Linux Cross Reference (LXR)

10

 Kernel source code:

• Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds of
information.
• Using the Unix command line and then kernel source code browsers

Configuring, compiling and booting the Linux kernel:

• Kernel configuration
• Native compiling. Generated files.
• Booting the kernel
• Kernel booting parameters

NFS booting and cross-compiling:

• Booting on a directory on your GNU/Linux workstation, through NFS
• Kernel cross-compiling

Kernel configuration, cross-compiling and booting on NFS

• Using the ARM board
• Configuring, cross-compiling and booting a Linux kernel with NFS boot
support

11

Linux kernel modules:

• Linux device drivers
• A simple module
• Programming constraints
• Loading, unloading modules
• Module parameters
• Module dependencies
• Adding sources to the kernel tree
• Generating patches to share them with others

Writing modules:

• Write a kernel module with several capabilities, including module pa-
rameters.
• Access kernel internals from your module
• Setup the environment to compile it

 Memory management:

• Linux: memory management - Physical and virtual (kernel and user)
address spaces
• Linux memory management implementation
• Allocating with kmalloc()
• Allocating by pages
• Allocating with vmalloc()

12

I/O memory and ports:

• I/O register and memory range registration
• I/O register and memory access
• Read / write memory barriers
• Make a remote connection to your board through ssh
• Access the system console through the network
• Reserve the I/O memory addresses used by the serial port
• Read device registers and write data to them, to send characters on
the serial port

Character drivers:

• Device numbers
• Getting free device numbers
• Implementing file operations: read, write, open, close, ioctl...
• Exchanging data between kernel-space and user-space
• Character driver registration
• Using the ARM board
• Writing a simple character driver, to write data to the serial port
• On your workstation, checking that transmitted data is received cor-
rectly
• Exchanging data between userspace and kernel space
• Practicing with the character device driver API
• Using kernel standard error codes

13

Processes, scheduling, sleeping and interrupts:

• Process management in the Linux kernel
• The Linux kernel scheduler and how processes sleep
• Interrupt handling in device drivers: interrupt handler registration and
programming
• Scheduling deferred work
• Adding read capability to the character driver developed earlier
• Register an interrupt handler
• Waiting for data to be available in the read file operation
• Waking up the code when data is available from the device

Driver debugging techniques:

• Debugging with printk
• proc and debugfs entries
• Analyzing a kernel oops
• Using kgdb, a kernel debugger
• Using the Magic SysRq commands
• Debugging through a JTAG probe
• SystemTap and demonstration

 Investigating kernel faults:

• Using the ARM board
• Studying a broken driver
• Analyzing a kernel fault and locating the problem in the source code

14

Kernel boot-up details:

• Detailed description of the kernel boot-up process, from execution by
the bootloader to the execution of the first userspace program
• Initcalls: how to register your own initialization routines

 Working with the community:

• How to get help from the community
• Report bugs
• Generate and send patches
• Useful resources about the kernel

Managing kernel sources with git:

• Very useful to manage your changes to the Linux kernel (drivers, board
support code), staying in sync with mainstream updates
• Cloning an existing git tree
• Creating your own branch with your own changes
• Generating patches against the reference tree
• Review of useful git commands
• Understanding the work flow used by kernel developers, through the
study of typical scenarios
• Create your own git branch from the mainline tree
• Get changes from trees and generate your own patch-set
• Keep your branch updated with the changes in your reference tree

